A Standard Zero Free Region for Rankin Selberg L-functions

نویسندگان

  • Dorian Goldfeld
  • Xiaoqing Li
  • DORIAN GOLDFELD
  • XIAOQING LI
چکیده

A standard zero free region is obtained for Rankin Selberg L-functions L(s, f×f) where f is a tempered Maass form on GL(n) and f is not necessarily self dual. The method is based on the theory of Eisenstein series generalizing a work of Sarnak. §

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 03 06 05 2 v 2 [ m at h . N T ] 2 A pr 2 00 4 Effective multiplicity one on GL ( n )

We give a narrow zero-free region for standard L-functions on GL(n) and Rankin-Selberg L-functions on GL(m) × GL(n) through the use of positive Dirichlet series. Such zero-free regions are equivalent to lower bounds on the edge of the critical strip, and in the case of L(s, π × ˜ π), on the residue at s = 1. Using the latter we show that a cuspidal automorphic representation on GL(n) is determi...

متن کامل

Strong exponent bounds for the local Rankin-Selberg convolution

Let $F$ be a non-Archimedean locally compact field‎. ‎Let $sigma$ and $tau$ be finite-dimensional representations of the Weil-Deligne group of $F$‎. ‎We give strong upper and lower bounds for the Artin and Swan exponents of $sigmaotimestau$ in terms of those of $sigma$ and $tau$‎. ‎We give a different lower bound in terms of $sigmaotimeschecksigma$ and $tauotimeschecktau$‎. ‎Using the Langlands...

متن کامل

1 5 N ov 2 00 6 The Analytic Strong Multiplicity One Theorem for

Let π = ⊗πv and π ′ = ⊗π ′ v be two irreducible, automorphic, cuspidal representations of GLm (AK). Using the logarithmic zero-free region of Rankin-Selberg L-function, Moreno established the analytic strong multi-plicity one theorem if at least one of them is self-contragredient, i.e. π and π ′ will be equal if they have finitely many same local components πv, π ′ v , for which the norm of pla...

متن کامل

The central value of the Rankin-Selberg L-functions

The values of L-functions at special points have been the subject of intensive studies. For example, a good positive lower bound for the central value of Hecke L-functions would rule out the existence of the Landau-Siegel zero, see the notable paper [IS]; the nonvanishing of certain Rankin-Selberg L-functions is a crucial ingredient in the current development of the generalized Ramanujan conjec...

متن کامل

Real zeros and size of Rankin-Selberg L-functions in the level aspect

In this paper, some asymptotic formulas are proved for the harmonic mollified second moment of a family of Rankin-Selberg Lfunctions. One of the main new input is a substantial improvement of the admissible length of the mollifier which is done by solving a shifted convolution problem by a spectral method on average. A first consequence is a new subconvexity bound for Rankin-Selberg L-functions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015